Publication of Department of Mathematics annual year 2014-15

Department of Mathematics

Journals

1. A. K. Gupta, and I. Dhiman, “Phase diagram of a continuum traffic flow model with a static bottleneck,” Nonlinear Dyn., vol. 79, no. 1, pp. 663–671, 2014.

2. A. K. Gupta, and I. Dhiman, “Analyses of a continuum traffic flow model for a nonlane-based system,” Int. J. Mod. Phys. C, vol. 25, no. 10, p. 1450045, 2014.

3. C. Rana, and M. Mishra, “Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.,” J. Chem. Phys., vol. 141, no. 21, p. 214701, 2014.

4. I. Dhiman, and A. K. Gupta, “Two-channel totally asymmetric simple exclusion process with Langmuir kinetics: The role of coupling constant,” EPL (Europhysics Lett., vol. 107, no. 2, p. 20007, 2014.

5. I. Dhiman, and A. K. Gupta, “Effect of coupling strength on a two-lane partially asymmetric coupled totally asymmetric simple exclusion process with Langmuir kinetics,” Phys. Rev. E, vol. 90, no. 1, p. 012114, 2014.

6. N. Blackbeard, S. Wieczorek, H. Erzgräber, and P. S. Dutta, “From synchronisation to persistent optical turbulence in laser arrays,” Phys. D Nonlinear Phenom., vol. 286–287, pp. 43–58, 2014.

7. P. Redhu and A. K. Gupta, “Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing,” Phys. A Stat. Mech. its Appl., vol. 421, pp. 249–260, 2015.

8. P. S. Dutta, B. W. Kooi, and U. Feudel, “Multiple resource limitation: nonequilibrium coexistence of species in a competition model using a synthesizing unit,” Theor. Ecol., vol. 7, no. 4, pp. 407–421, 2014.

9. . Panda, A. Bhowmik, R. Das, R. Repaka, and S. C. Martha, “Application of homotopy analysis method and inverse solution of a rectangular wet fin,” Energy Convers. Manag., vol. 80, pp. 305–318, 2014.

10. S. Panda, R. K. Singla, R. Das, and S. C. Martha, “Identification of design parameters in a solar collector using inverse heat transfer analysis,” Energy Convers. Manag., vol. 88, pp. 27–39, 2014.

11. S. Panda and S. C. Martha, “Oblique wave scattering by undulating porous bottom in a two-layer fluid: Fourier transform approach,” Geophys. Astrophys. Fluid Dyn., vol. 108, no. 6, pp. 587–614, 2014.

12. S. Panda, S. C. Martha, and A. Chakrabarti, “three-layer fluid flow over a small obstruction on the bottom of a channel,” Anziam J., vol. 56, no. 03, pp. 248–274, 2015.

13. S. Pramanik and M. Mishra, “Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media,” Chem. Eng. Sci., vol. 122, pp. 523–532, 2015.

14. S. Pramanik and M. Mishra, “Effect of Péclet number on miscible rectilinear displacement in a Hele-Shaw cell,” Phys. Rev. E, vol. 91, no. 3, p. 033006, 2015.

15.T.ChatterjeeandS.Gun,“OnthezerosofgeneralizedHurwitzzetafunctions,”J.NumberTheory, vol. 145, pp. 352–361, 2014.
16. K. Kaur and M. Khan, Units in FD2p, Publicationes Mathematicae Debrecen, 86, (3-4), 275-283, 2015.

Conference proceedings

 

1. A. Choudhary, and S.C. Martha, “Scattering of water waves by irregular bottom in the presence of thin vertical permeable barrier” in proc. 59th Congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Alliance College of Engineering and Design, Alliance University, Bangalore, India, December 17-20, 2014.