Department of Bio-Medical Engineering (DBME), IIT Ropar, Punjab.
1.Molecular Neurobiol [IF: 6] May 2025. Assessing the implications of morphine-induced dysregulation of autophagy on brain health. Malik JA, Agrewala JN.
2. J Mater Chem B. [IF: 5.7]. 2025 Sep 3. [7]Helicene-backboned quaternary ammonium salts: synthesis, photophysical investigation, and lysosomal tracking. Deepshikha, Bisht SS, Lal N, Singh P, Malik JA, Agrewala JN, Shaikh AC.
3. J Neuroimmunol [IF: 3.2] 400:578534. Morphine's role in macrophage polarization: exploring M1 and M2 dynamics and disease susceptibility. Malik JA, Agrewala JN.
4. In Silico Pharmacol [IF: 4] 13:2025:67. Computational screening and MM/GBSA-based MD simulation studies reveal the high binding potential of FDA-approved drugs against morphine addiction. Malik JA, Wani MA, Garg P, Agrewala JN.
5. J Biosci [IF: 2.8] 2025. Chronic administration of morphine provokes the generation of anti-morphine antibodies and immunosuppression in individuals with opioid use disorder. Nanda S, Singh S, Zafar MA, Malik JA, Ghosh A, Basu D, Agrewala JN.
6. Int J Biol Macromol [IF 8.2] 14:2024:274. A novel strategy to elicit enduring anti-morphine immunity and relief from addiction by targeting Acr1 protein nano vaccine through TLR-2 to dendritic cells. Nanda S, Zafar MA, Lamba T, Malik JA, Khan MA, Bhardwaj P, Bisht B, Ghadi R, Kaur G, Bhalla V, Sehrawat S, Owais M, Jain S, Agrewala JN.
7. Biologia [IF: 3.7] 2024:1-22. Exploring the potential of homologous epitopes from gut microbes for SARS‑CoV‑2 vaccine design, using molecular modelling to gain critical insights. Prajapati S, Malik JA, Gupta S Lamba T, Zafar MA, Khan MA, Nanda S, Mehta Y, Agrewala JN.
8. Eur J Pharmacol. 26:2024: 176856 [IF: 5.6]. From Defense to Dysfunction: Autophagy's Dual Role in Disease Pathophysiology. Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN.
9. Nanoscale 25:2024:14006 [IF: 5.8]. Shielding against breast tumor relapse with an autologous chemo- photo-immune active nano-micro-sera based fibrin implant. Mimansa, Zafar MA, Verma DK, Das R, Agrewala JN, Shanavas A.
10. Eur J Pharmacol. 975:2024:176637 [IF: 5.6]. Immunosuppressive effects of morphine on macrophage polarization and function. Malik JA, Khan MA, Lamba T, Zafar MA, Nanda S, Owais M, Agrewala JN.
11. Medical Hypotheses 186:2024:111335. [IF: 4.7]. Morphine acts via TLR4 resulting in neuroinflammation and immunosuppression. Malik JA, Kaur G, Agrewala JN.
12. Aging Cell 22:2023:13838. [IF: 14.6]. Age-mediated gut microbiota dysbiosis promotes loss of tolerogenic potential in dendritic cells. Bashir H, Singh S, Singh RP, Agrewala JN*, Kumar R*.
13. Gut Microbiome 15:2023:2290643. [IF: 12.7]. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung. Diseases. Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN.
14. Int J Biol Macromol. 5:2023: 253. [IF: 8.05]. Revolutionizing medicine with toll-like receptors: a path to strengthening cellular immunity. Malik JA, Kaur G, Agrewala JN.
15. J Biol Chem. 2022 Oct 15:102596. [IF: 5.49]. Mycobacterium tuberculosis epitope entrapped in nanoparticles expressing TLR-2 ligand targeted to dendritic cells elicit protective immunity. Das DK, Zafar MA, Nanda S, Singh S, Lamba T, Bashir H, Singh P, Maurya SK, Nadeem S, Sehrawat A, Bhalla V, Agrewala JN.
16. Cell Mol Life Sci. 79:2022:567 [IF: 10.4]. Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system. Singh S, Maurya SK, Aqdas M, Bashir H, Arora A, Bhalla V, Agrewala JN.
17. Autophagy 17:2021:1 [IF: 18.7]. Guidelines for the use and interpretation of assays for monitoring autophagy. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, Agrewala JN, et al.
18. Autophagy 16:2020:1021 [IF: 18.7]. Induction of autophagy through Clec4e in combination with TLR-4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN.
19. Eur J Immunol. 16:2020:10 [IF: 6.8]. Intestinal microbiota disruption limits the isoniazid mediated clearance of Mycobacterium tuberculosis in mice. Negi S, Pahari S, Bashir H, Agrewala JN.
20. J Proteome Res. [IF: 4.46]. 19:2020:4655. Deciphering the structural enigma of HLA class-II binding peptides for enhanced immunoinformatics-based prediction of vaccine epitopes. Chatterjee D, Priyadarshini P, Das DK, Mushtaq K, Singh B, Agrewala JN.
21. Cancer Immunol Immunother. 68:2019:1995 [IF: 7.0]. Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity. Vidyarthi A, Agnihotri T, Khan N, Singh S, Tewari MK, Radotra BD, Chatterjee D, Agrewala JN.
22. Cancer Medicine 8:2019:246. [IF: 4.45]. Low prevalence of anti-xenobiotic antibodies among the occupationally exposed individuals is associated with a high risk of cancer. Sajid M, Agrewala JN.
23. J Trans Med. 16:2018:279 [IF: 8.44]. A lipidated bi-epitope vaccine comprising of MHC-I and MHC-II binder peptides elicits protective CD4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis. Rai PK, Chodisetti SB, Maurya SK, Nadeem S, Zeng W, Janmeja AK, Jackson DC, Agrewala JN.
24. J Trans Med. 15:2017:201 [IF: 8.44]. A Lipidated peptide of Mycobacterium tuberculosis resuscitates the protective efficacy of BCG vaccine by evoking memory T cell immunity. Rai PK, Chodisetti SB, Zeng W, Nadeem S, Maurya SK, Pahari S, Janmeja AK, Jackson DC, Agrewala JN.
25. Crit Rev Microbiol. 1:2016:1 [IF: 8.2]. T cell exhaustion in tuberculosis: pitfalls and prospects. Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN.
26. Crit Rev Microbiol. 4:2015:389 [IF: 8.192]. Challenges and Solutions for a Rational Vaccine Design for TB-endemic Regions. Gowthaman U, Mushtaq K, Tan AC, Rai PK, Jackson DC, Agrewala JN.
27. J Innate Immunity 2015 Nov 28 [IF: 7.4]. 2015. NOD-2 and TLR-4 signaling reinforce dendritic cells efficacy and reduce dose of TB drugs against Mycobacterium tuberculosis. Khan N, Pahari S, Vidyarthi A, Aqdas M, Agrewala JN.
28. J Infect Dis. 211:2015: 486-96 [IF: 7.8]. Triggering through TLR-2 limits chronically stimulated Th1 cells from undergoing exhaustion. Chodisetti SB, Gowthaman U, Rai PK, Vidyarthi A, Khan N, Agrewala JN.
29. J Biol Chem. 289:2014:17515-28 [IF: 4.8]. Caerulomycin A enhances the TGF-β-Smad3 signalling by suppressing IFN-γ-STAT1 signalling to expand Tregs. Gurram RK, Kujur W, Maurya SK, Agrewala JN.
30. J Infect Dis. 209:2014:1436-45 [IF: 7.8]. Latency Associated Protein Acr1 Impairs Dendritic Cells Maturation and Functionality: A Possible Mechanism of Immune Evasion by Mycobacterium tuberculosis. Siddiqui KF, Amir M, Gurram RK, Khan N, Arora A, K Rajagopal, Agrewala JN.
31. Crit Rev Microbiol. 40:2014:273-280. [IF: 8.192]. Friendly Pathogens: Prevent or Provoke Autoimmunity. Sathybama S, Khan N, Agrewala JN.
32. J Biol Chem. 288: 2013: 29987-99 [IF: 4.8]. Truncated hemoglobin, HbN, is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection. Arya S, Sethi D, Singh S, Hade MD, Singh V, Raju P, Chodisetti SB, Verma D, Varshney GC, Agrewala JN, Dikshit KL.
33. Trends Mol Medicine 18:2012:607-14. [IF: 11.95]. Lipidated promiscuous peptides vaccine for tuberculosis endemic regions. Gowthaman U, Rai PK, Khan N, Jackson D, Agrewala JN.
34. PLoS Pathogens 2012 Jun; 8(6):e1002676. [IF: 9.23]. Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici. Khan N, Gowthaman U, Pahari S, Agrewala JN.
35. J Immunol. 188:2012:5593. [IF: 5.8]. M. tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. Mahajan S, Dkhar KH, Chandra V, Dave S, Nanduri R, Janmeja AK, Agrewala JN, Gupta.
36. J Infect Dis. 204:2011:1328-38. [IF: 7.8]. Promiscuous peptide of 16 kDa antigen linked to Pam2Cys protects against M. tuberculosis by evoking enduring memory T cells response. Gowthaman U, Singh V, Zeng W, Jain S, Siddiqui KF, Chodisetti SB, Gurram RK, Parihar P, Gupta P, Gupta UD, Jackson DC, Agrewala JN.
37. Crit Rev Microbiol. 37:2011:349-57 [IF: 8.192]. Understanding the biology of 16 kDa antigen of Mycobacterium tuberculosis: scope in diagnosis, vaccine design and therapy. Siddiqui KF, Amir M, Agrewala JN.
38. J Infect Dis. 202:2010:480-9 [IF: 7.8]. Coadministration of IL-7 and IL-15 with BCG mount enduring T cell memory response against M. tuberculosis. Singh V, Gowthaman U, Jain S, Parihar P, Banskar S, Gupta P, Gupta UD, Agrewala JN.
39. J Proteome Res. 7:2008:154-63. [IF: 7.00]. In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. Gowthaman U, Agrewala JN.
40. J Biol Chem. 282:2007:6106-15 [IF: 5.6]. Unique ability of activated CD4 + T cells but not rested effectors to migrate to non-lymphoid sites in the absence of inflammation. Agrewala JN, Brown DM, Lepak NM, Duso D, Huston G, Swain SL.
41. Immunol Rev. 211:2006:8-22 [IF: 13.0]. CD4 memory: generation and multi-faceted roles for CD4 T Cells in protective immunity to influenza. Swain SL, Agrewala JN, Brown D, Gibbs DJ, Golech S, Huston G, Jones S, Kamperschroer C, Lee WH, McKinstry K, Roman E, Strutt T, Weng NP.
42. J Infect Dis. 190:2004:107-14 [IF: 7.8]. Potent role of the vaccines prepared from macrophages infected with live bacteria in protection against M. tuberculosis and S. typhimurium infections. Sharma N, Agrewala JN.
43. J Biol Chem. 277:2002:7766-75 [IF: 7.6]. Distinct Role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. Suvas S, Singh, V, Sahdev, S, Vohra, H, Agrewala JN.
44. Eur J Immunol. 29:1999:1753-61 [IF: 6.8]. Influence of HLA-DR on the phenotype of CD4 + T lymphocytes specific for an epitope of the 16-kD α-crystalline antigen of Mycobacterium tuberculosis. Agrewala JN, Wilkinson RJ.
45. J Immunol. 160:1998:1067-77 [IF: 7.8]. Differential effect of anti-B7-1 and anti-M150 antibodies in restricting the delivery of costimulatory signals from B cells and macrophages. Agrewala JN*, Suvas S, Verma RK, Mishra GC.
46. J Immunol. 153:1994:1613-25 [IF: 7.8]. Antigen-specific early primary humoral responses modulate Immunodominance of B cell epitopes. Vijayakrishnan L, Kumar V, Agrewala JN, Mishra GC, Rao KVS.
47. Eur J Immunol. 24:1994:2092-7 [IF: 6.8]. A 150-kDa molecule of murine macrophage membrane stimulates interleukin-2 and interferon-g production and proliferation of ovalbumin-specific CD4 + T cells. Agrewala JN, Vinay DS, Joshi A, Mishra GC.
Agrewala JN, Sharma N. Process for the preparation of a vaccine for the treatment of tuberculosis and other intracellular infectious diseases and the vaccine produced by the process [2004]. United States Patent No. 6,783,765, South Africa Patent No. 2002/2511, Russian and Bangladesh Patent No. 1003852.
Singla AK, Agrewala JN, Vohra RM, Jolly RS. Caerulomycin A as an immunosuppressive agent. United States Patent No. 8,114,895, China (CN101287465), PCT (WO2007031832), February 14, 2012.
Agrewala JN, Gowthaman U, Jackson D, Zeng W. Synthetic immunogen useful for generating long- lasting immunity and protection against pathogens. United States Patent 9340622, granted on 17/05/2016; India Patent No. 318504, granted on 20/08/2019; Australia Patent No. 2011303430 granted on 08/01/2015; China patent No. ZL201180054827.5, granted on: 24/02/2016; Germany Patent No. 2616098, granted on 20/04/2016, European patent No. 2616098, granted on 20/04/2016; Indonesia patent No. IDP000040873, granted on 11/04/2016; Japan patent No. 5991976 granted on 26/08/2016.
Sarkar D, Samuel JS, Agrewala JN, SB Chodsetti. rHuEpo variants with altered in vitro and in vivo properties. Indian Patent Application No. 2403DEL2013; filing date: 17/10/2013.
Agrewala JN and Nanda S. A novel chimeric vaccine against addiction and tuberculosis infection and method of preparing the novel chimeric vaccine. [Patent application No. 202311081474, filing date: 30/11/2023].
Agrewala JN and Zafar MA. Rapamycin-induced autophagy bolsters the generation of MOG-reactive protective Tregs by suppressing pathogenic Th17 cells: a prophylactic and therapeutic remedy for averting autoimmune diseases [Patent application No. 202311084966, filing date: 13.12.2023].