Indian Institute of Technology Ropar Department of Mathematics MA101 - Calculus

First Semester of Academic Year 2025-26

Tutorial Sheet - 7

- 1. Check the convergence of the improper integral $\int_{1}^{3} \frac{dx}{x-1}$.
- 2. For what values of p does the integral $\int_{1}^{\infty} \frac{dx}{x^p}$ converges and what is its value?
- 3. Let a < b and p < 1. Does the improper integral $\int_a^b \frac{dx}{(b-x)^p}$ converge?
- 4. Evaluate the improper integral $\int_{0}^{\infty} \frac{x+3}{(x-1)(x^2+1)} dx$.
- 5. Check the convergence of the following improper integrals:

(a)
$$\int_{1}^{\infty} \frac{dx}{1 + e^x}$$

(a)
$$\int_{1}^{\infty} \frac{dx}{1 + e^x}$$
 (b)
$$\int_{1}^{\infty} \frac{\cos x}{x^p} dx \text{ for } p > 0.$$

6. Use integration, direct comparison test or limit comparison test to test the integrals for convergence:

$$(a) \int_0^\pi \frac{dt}{\sqrt{t} + \sin t}$$

(a)
$$\int_0^{\pi} \frac{dt}{\sqrt{t} + \sin t}$$
 (b) $\int_0^{\ln 2} x^{-2} e^{\frac{-1}{x}} dx$ (c) $\int_1^{\infty} \frac{e^x}{x} dx$

(c)
$$\int_{1}^{\infty} \frac{e^{x}}{x} dx$$

- 7. Calculate the arc length:
 - (a) $24xy = y^4 + 48$ from the point $(\frac{4}{3}, 2)$ to $(\frac{11}{4}, 4)$.
 - (b) $x = 8t^{\frac{3}{2}}, y = 3 + (8 t)^{\frac{3}{2}}$ where $0 \le t \le 4$.
- 8. Calculate the area of the surfaces generated by revolving the arcs
 - (a) $y = x^3$ from x = 1 to x = 2 about the x-axis.
 - (b) y = x + 2 from y = 2 to y = 5 about the line y = 4.
- 9. An electric cable is hanging between two poles that are 200 meters apart and cable is in the shape of the graph of the function $y = 75(e^{\frac{x}{150}} + e^{\frac{-x}{150}})$. Find the length of the cable.
- 10. Let $(3\cos t, 4\sin t)$ represents a curve in \mathbb{R}^2 for $0 \le t \le 2\pi$. Find the approximate arc length of the curve when $\frac{\pi}{4} \le t \le \frac{3\pi}{4}$ so that the magnitude of error is less than 0.1
- 11. Use integration, direct comparison test or limit comparison test to test the integrals for convergence:

$$(a) \int_4^\infty \frac{dx}{x^2 - 2x}$$

(b)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^6+1}}$$

(a)
$$\int_{4}^{\infty} \frac{dx}{x^2 - 2x}$$
 (b)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^6 + 1}}$$
 (c)
$$\int_{3}^{\infty} \frac{dx}{2 + \cos x + \ln x}$$

***** END *****