Indian Institute of Technology Ropar Department of Mathematics MA101 - Calculus

First Semester of Academic Year 2025-26

Tutorial Sheet - 2

- 1. For the given sequences $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$, prove or disprove the following:
 - (i) $\{a_nb_n\}_{n\geq 1}$ is convergent, if $\{a_n\}_{n\geq 1}$ is convergent.
 - (ii) $\{a_nb_n\}_{n\geq 1}$ is convergent, if $\{a_n\}_{n\geq 1}$ is convergent and $\{b_n\}_{n\geq 1}$ is bounded.
- 2. Show that the sequence $\left\{\frac{n^2+3n+5}{2n^2+5n+7}\right\}$ converges to $\frac{1}{2}$.
- 3. Test the convergence/divergence of the following sequences by using the definition of convergence/divergence.

(i)
$$\frac{n}{n+1}$$
 (ii) $\frac{2n}{3n^2+1}$ (iii) $\frac{2n^2+3}{3n^2+1}$

4. Test the convergence/divergence of the following sequences by using algebra of limits for sequences.

(i)
$$x_n = \frac{P(n+1)}{P(n)}$$
 where $P(t) = 5t^4 + t^2 + 1$

(ii) For
$$0 < a < b$$
, consider $x_n = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$.

- 5. Prove that $\lim_{n\to\infty} \frac{1}{n^p} = 0$, if p > 0.
- 6. Determine whether the following sequences converges/diverges.

$$(i)\sqrt{n+1} - \sqrt{n}$$
 $(ii)n^{1/n^2}$ (iii) $(n!)^{1/n^2}$

7. For
$$a > 0$$
, let $S_1 = a$ and $S_{n+1} = \frac{1}{2} \left(S_n + \frac{a}{S_n} \right)$. Prove that $\{S_n\}$ converges to \sqrt{a} .

8. Prove that the following sequences converges and find its limits.

(i)
$$a_1 = 1$$
 and $a_{n+1} = \sqrt{2 + a_n}$ for all $n \ge 1$

(i)
$$a_1 = 1$$
 and $a_{n+1} = \sqrt{2 + a_n}$ for all $n \ge 1$.
(ii) $a_1 = 1$ and $a_{n+1} = \frac{1}{4}(2a_n + 3)$ for all $n \ge 1$.

- 9. If $x_n > 0$ for all $n \in \mathbb{N}$, then prove that $x_n \to \infty$ as $n \to \infty$ if and only if $\frac{1}{x_n} \to 0$ as $n \to \infty$.
- 10. If $a_n \to a$, $b_n \to b$ and $a_n \le b_n \ \forall n \in \mathbb{N}$, then prove that $a \le b$.

- 11. Prove that the sequence $\{x_n\}$, where $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n}$ is convergent.
- 12. Prove that the sequence $\{1+(-1)^n\}$ oscillates finitely.
- 13. Prove that the following sequences are convergent by showing that they are monotone and bounded.

(i)
$$x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$
, for $n \ge 1$.

(ii)
$$x_1 > 0$$
 and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{9}{x_n} \right)$, for $n \ge 1$.

- 14. Prove that the sequence $\{x_n\}$ is divergent, where $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$.
- 15. Using Squeeze theorem, prove that

(i)
$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+n)^2} \right) = 0.$$

(ii)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$