Indian Institute of Technology Ropar Department of Mathematics MA101 - Calculus

First Semester of Academic Year 2025-26

Tutorial Sheet - 1

- 1. Let $x, y \in \mathbb{R}$. Then prove the following:
 - (a) $\max\{x,y\} = \frac{x+y+|x-y|}{2}$ and $\min\{x,y\} = \frac{x+y-|x-y|}{2}$.
 - (b) $0 \le x < y \Rightarrow \frac{x}{1+x} < \frac{y}{1+y}$.
 - (c) $\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$.
- 2. For $x, y \in \mathbb{R}$, prove that
 - (a) $|x+y| \ge ||x| |y||$.
 - (b) $|x y| \ge ||x| |y||$.
 - (c) $|x y| \le |x| + |y|$.
- 3. Prove that $\sqrt{3}$ is an irrational number.
- 4. Prove that $1/\sqrt{1} + 1/\sqrt{2} + \cdots + 1/\sqrt{n} > \sqrt{n}$ for all $n \in \mathbb{N}$ and n > 1.
- 5. Let $a, b \in \mathbb{R}$, and suppose that for every $\epsilon > 0$ we have $a \leq b + \epsilon$. Show that $a \leq b$.
- 6. Let $a, b \in \mathbb{R}$. If $0 < a \le b$ and the indicated square roots exist, then prove that

$$a \le \frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} \le b.$$

- 7. Using Mathematical Induction prove that $\forall n \in \mathbb{N}, (1+x)^n \geq 1+nx$.
- 8. Show that if $a, b \in \mathbb{R}$, and $a \neq b$, then there exist ϵ -neighbourhoods U of a and V of b such that $U \cap V = \emptyset$.
- 9. Let $\epsilon > 0$ and $\delta > 0$ and $a \in \mathbb{R}$. Show that $V_{\epsilon}(a) \cap V_{\delta}(a)$ and $V_{\epsilon}(a) \cup V_{\delta}(a)$ are γ —neighborhoods of a for appropriate values of γ .
- 10. Find all $x \in \mathbb{R}$ that satisfy both |2x-3| < 5 and |x+1| > 2 simultaneously.
- 11. Prove the following:
 - (a) Every non-empty subset of \mathbb{N} has a least member.
 - (b) For every $x \in \mathbb{R}$, there exist $m, n \in \mathbb{Z}$ such that m < x < n.
 - (c) For every $x \in \mathbb{R}$, there exists unique $n \in \mathbb{Z}$ such that $n \leq x \leq n+1$, i.e., every real number lies between two consecutive integers.
- 12. Prove that there is no least positive real number.
- 13. Find $m \in \mathbb{N}$ such that $\left|\frac{2n}{n+3} 2\right| < \frac{1}{5}, \forall n \ge m$.
- 14. Check whether the sequence $\left\{\frac{n^2+1}{2n+3}\right\}$ is bounded or not.
- 15. Prove or disprove that the following sequences are bounded:

- (a) $\left\{\frac{2n-5}{2n+1}\right\}$.
- (b) $\{1 + \frac{(-1)^n}{n}\}.$
- (c) $\{1 + \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^n}\}.$
- (d) $\{n-n^2\}.$
- 16. Determine, whether the sequences are increasing or decreasing:
 - (a) $\{\frac{n}{n^2+1}\}_{n\geq 1}$
 - (b) $\left\{\frac{2^n 3^n}{5^{n+1}}\right\}_{n\geq 1}$
- 17. Prove that the sequence $\{x_n\}$, defined by $x_1 = \sqrt{a} > 0$, $x_{n+1} = \sqrt{a + x_n}$, is bounded above.
- 18. If 0 < a < b and $S_1 = a$, then the sequence $\{S_n\}$ is bounded and monotonic increasing, where $S_{n+1} = \sqrt{\frac{ab^2 + S_n^2}{a+1}}$ for all $n \in \mathbb{N}$.
- 19. Prove that $\left[\frac{1}{2}(a+b)\right]^2 \leq \frac{1}{2}(a^2+b^2)$ for all $a,b \in \mathbb{R}$. Show that equality holds if and only if a=b.
- 20. Show that there exists a unique positive real number x such that $x^2 = 2$.
- 21. Show that if $a, b \in \mathbb{R}$ then
 - (a) $\min\{a, b, c\} = \min\{\min\{a, b\}, c\}.$
 - (b) $\min\{a, b\} = -\max\{-a, -b\}.$

****** ALL THE BEST *****